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ABSTRACT

This paper describes a self-contained, automated methodol-
ogy for active 
ow control which couples the time-dependent
Navier-Stokes system with the adjoint Navier-Stokes sys-
tem and optimality conditions from which optimal states,
i.e., unsteady 
ow �elds and controls (e.g., actuators), may
be determined. The problem of boundary layer instability
suppression through wave cancellation is used as the initial
validation case to test the methodology. Here, the objective
of control is to match the wall-normal stress along a por-
tion of the boundary to a given vector; instability suppres-
sion is achieved by choosing the given vector to be that of
a steady base 
ow. Control is e�ected through the injection
or suction of 
uid through a single ori�ce on the boundary.
The results demonstrate that instability suppression can be
achieved without any a priori knowledge of the disturbance.
The present methodology may potentially be applied to sep-
aration control, re-laminarization, and turbulence control
applications using one or more sensors and actuators.

1. INTRODUCTION

In the last decade, increasing attention has been de-
voted to the development of techniques capable of enhanc-
ing our ability to control the unsteady 
ow in a wide variety
of con�gurations such as engine inlets and nozzles, com-
bustors, automobiles, aircraft, and marine vehicles. Con-
trolling the 
ow in these con�gurations can lead to greatly
improved e�ciency and performance, while decreasing the
noise levels generally associated with the otherwise unat-
tended unsteady 
ow. Depending on the desired result, one
might wish to delay or accelerate transition, reduce drag or
enhance mixing. There might be a need to postpone 
ow

separation, increase lift or manipulate a turbulence �eld.
Gad-el-Hak (1989) and Gad-el-Hak & Bushnell (1991) pro-
vide an excellent introduction to and overview of various
control methodologies.

The methodology of the current paper is based on
de�ning a control mechanism and an objective for control,
and then �nding, in a systematic and automated manner,
controls that best meet the objective. In the present set-
ting, an objective or cost functional is de�ned that measures
the \distance" between the measured stresses, and their de-
sired values along a limited section of the bounding wall
and over a speci�ed length of time. One may interpret
the objective functional as a \sensor," i.e. the objective
functional senses how far the 
ow stresses on the wall are
from the corresponding desired values. To control the 
ow,
time-dependent injection and suction is imposed along a
small ori�ce in the bounding wall. Although the spatial
dependence of the suction pro�le is speci�ed (for simplic-
ity), the optimal control methodology determines the time-
variation of this pro�le. However, unlike feedback control
methodologies wherein the sensed data determines the con-
trol through a speci�ed feedback law or controller, here the
time-dependence of the control is the natural result of the
minimization of the objective functional. We have a sen-
sor that feeds information to a controller that in turn feeds
information to the actuator. However, in the optimal con-
trol setting, the sensor is actually an objective functional
and the controller is a coupled system of partial di�erential
equations that determine the control that does the best job
of minimizing the objective functional.

The present active-control approach is demonstrated
for the evolution and automated control of spatially grow-
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ing 2D disturbances in a 
at-plate boundary layer. As the
length of time over which the minimization process is in-
creased, we recover the results obtained by wave cancel-
lation, thus validating the approach. The ultimate goal of
this line of research is to introduce automated control to ex-
ternal 
ows over realistic con�gurations such as wings and
fuselages, and to devise novel 
ow control techniques.

2. THE OPTIMIZATION PROBLEM

Due to restrictions on the length of this paper, an ab-
breviated derivation of the governing equations is listed be-
low. For a detailed description of the derivation refer to
Joslin et al. (1995), where both the channel and boundary-
layer problems are outlined and both the wall-normal and
shear stresses are included in the solution procedure. Here,
only the wall-normal stress terms are included in the opti-
mization problem for the boundary layer.

2.1. The state equations

Let 
 denote the 
ow domain which is the boundary
layer [x � 0, 0 � y � h], where h is the location of the
truncated freestream condition. Let � denote its boundary
and let (0; T ) be the time interval of interest. The in
ow
part of the boundary [x = 0; 0 � y � h] is denoted by
�i and the upper boundary [x � 0, y = h] is denoted by
�e. The part of the boundary on which control is applied
(i.e., along which the actuator is placed) is denoted by �a,
which is assumed to be a �nite connected part of �w, which
is the remaindor of the lower boundary (or wall) [x � 0,
y = 0]. Controls are only activated over the given time
interval t 2 (T0; T1), where 0 � T0 < T1 � T .

The 
ow �eld is described by the velocity vector (u; v)
and the scalar pressure p and is obtained by solving the
following momentum and mass conservation equations:
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where U1 and P1 denote the free-stream 
ow speed and
pressure, respectively. Here, the initial velocity vector and
the in
ow velocity vector are assumed given and the base

ow is assumed to be the Blasius similarity solution.

The control function g2(t; x) which gives the rate at
which 
uid is injected or sucked perpendicularly through
�a is to be determined as part of the optimization process.
In order to make sure that the control remains bounded at
T0, it is required that

g2jt=T0 = g20(x) on �a (8)

where g20(x) is a speci�ed function de�ned on �a. A logical
choice is g20(x) = 0 because the adjacent grid points yield
this zero value.

2.2. The objective functional

Assume that �s is a �nite, connected part of the wall
[x � 0, y = 0] which is disjoint from �a and that (Ta; Tb) is
a time interval such that 0 � Ta < Tb � T . Then, consider
the functional
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where g2 denotes the control and �2(t; x) is a given function
de�ned on (Ta; Tb) � �s. Note that since �s is part of the
lower boundary, �p+2�@v=@y is the normal stress, exerted
by the 
uid on the bounding wall along �s and thus �2
may be interpreted as a given normal stress. Then, the
boundary segment �s can be thought of as a sensor which
measures the stresses on the wall. Thus, in (9), �s is the
part of the boundary � along which one wishes to match
the normal stress to the given function �2, and (Ta; Tb) is
the time interval over which this matching is to take place.

The second term in (9) is used to limit the size of
the control. Indeed, no bounds are a priori placed on g2;
its magnitude is limited by adding a penalty to the stress
matching functional de�ned by the �rst term in (9). The
particular form that these penalty terms take is motivated
by the necessity to limit not only the size of the control g2,
but also to limit oscillations in time. The constants �2 and
�2 are used to adjust the relative importance of the terms
appearing in the functional (9).

The (constrained) optimization problem is given as fol-
lows:

Find u; v; p; and g2 such that the functional
J (u; v; p; g2) given in (9) is minimized subject to the

requirement that (1)-(7) are satis�ed.
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3. THE OPTIMALITY SYSTEM

3.1. The Lagrangian functional

The method of Lagrange multipliers is formally used
to enforce the constraints (1)-(3) and (5). To this end, the
Lagrangian functional is introduced.

L(u; v; p; g2; û; v̂; p̂; s2)
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In (10), û and v̂ are Lagrange multipliers that are used to
enforce the x and y-components of the momentumequation
(1) and (2), respectively, p̂ is a Lagrange multiplier that is
used to enforce the continuity equation (3), and s2 is a La-
grange multiplier that is used to enforce the y-component
of the boundary condition (5). Note that Lagrange multi-
pliers have not been introduced to enforce the constraints
(4) and (6)-(8), so that these conditions must be required
of all candidate functions u, v, p, and g2.

Through the introduction of Lagrange multipliers, the
constrained optimization problem is converted into the un-
constrained problem:

Find u, v, p, g2, û, v̂, p̂, and s2 satisfying
(4) and (6)-(8) such that the Lagrangian

functional L(u; v; p; g2; û; v̂; p̂; s2)
given by (10) is rendered stationary.

In this problem, each argument of the Lagrangian functional
is considered to be an independent variable so that each may
be varied independently.

The �rst-order necessary condition that stationary
points must satisfy is that the �rst variation of the La-
grangian with respect to each of its arguments vanishes at
those points. One easily sees that the vanishing of the �rst
variations with respect to the Lagrange multipliers recovers

the constraint equations (1)-(3) and (5). Speci�cally,
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�L
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= 0 =) wall-normal boundary condition (5)

where �L=�û denotes the �rst variation of L with respect
to û, etc.

3.2. The adjoint equations

Next, set the �rst variations of the Lagrangian with
respect to the state variables u, v, and p equal to zero.
These result in the adjoint or co-state equations. Note that
since candidate solutions must satisfy (4) and (6)-(8), one
has that
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First, consider �L=�p = 0 which yields an equation for
arbitrary variations �p in the pressure. Applying Gauss'
theorem and choosing variations �p that vanish on the
boundary � but which are arbitrary in the interior 
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vanish at t = 0, t = T , and in a neighborhood of � are
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where equation (3) is used to e�ect a simpli�cation. Next,
variations that vanish in a neighborhood of �, but which
are otherwise arbitrary, are chosen to obtain

(û; v̂)
��
t=T

= (0; 0) in 
 : (15)

Now, along �, �v and @�v=@n may be independently se-
lected, provided that (11) is satis�ed, where @=@n denotes
the derivative in the direction of the outward normal to 

along �. If �v = 0 and @�v=@n varies arbitrarily along �,
then

(û; v̂) = (0; 0) on

8><
>:
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��
on (Ta; Tb)� �s ;

(17)
where �wn�s denotes the boundary �w with �s excluded
and �o denotes the out
ow boundary on the �nite compu-
tational domain.

3.3. The optimality condition

The only �rst order necessary condition left to consider
is �L=�g2 = 0. (These types of conditions are usually called
the optimality conditions.) Now, since all candidate func-
tion g2 must satisfy (8), it follows that �g2 = 0 at t = T0.
Then with �L=�g2 = 0, applying Gauss' theorem to re-
move all derivatives from the variation �g2 combined with
�g2jt=T0 = 0, and choosing variations �g2 that vanish at
t = T1 but which are otherwise arbitrary we �nd

�
@2g2
@t2

+ g2 = �
1

�2

�
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@v̂

@y

�
on (T0; T1)� �a (18)

Now, choosing variations that are arbitrary at t = T1 yields
that @g2=@t = 0 along �a at t = T1 so that, invoking (8),
g2(t; x) satis�es

g2jt=T0 = g20(x) and
@g2
@t

���
t=T1

= 0 on �a (19)

Note that, given p̂ and v̂, (18)-(19) constitute, at each point
x 2 �a, a two-point boundary value problem in time over
the interval (T0; T1).

3.4. Finite computational domain

In the computations, the semi-in�nite domain 
 is re-
placed by a �nite domain 
C . The convective unsteady 
ow
problem described by the Navier-Stokes equations requires

an out
ow boundary �o treatment that prevents numeri-
cal re
ections. This bu�er-domain technique described by
Streett & Macaraeg (1989) is used here.

A similar treatment of in
ow boundary �i must be ac-
counted for with the adjoint equations. In fact, the in
ow
boundary �i for the state equation is the out
ow bound-
ary for the adjoint equations and, conversely, the out
ow
boundary �o for the state equation is the in
ow boundary
for the adjoint equations because of the fact that t is in-
creasing in the state equations and decreasing in the adjoint
equations.

Due to (7), the allowable variations are further con-
strained to a relationship that implies that, along �e, one
may not choose the variations in �p and @�v=@y indepen-
dently. Considering, simultaneously, variations in p, v, and
@v=@y along �e, it can be shown that one obtains

û = 0 on (0; T )� �e (20)

Then, letting �v be arbitrary along �e yields

p̂+ 2�
@v̂

@y
+ vv̂ = 0 on (0; T )� �e (21)

The state equations (1)-(7) are driven by the given ini-
tial velocity (u0; v0), the given in
ow velocity (ui; vi), and
the controls (0; g2). Indeed, the purpose of this study is
to determine g2 that optimally counteracts instabilities cre-
ated upstream of �a. The adjoint equations (13)-(17) and
(21) are homogeneous except for the boundary condition
(17) along �s, the part of the boundary along which we
are trying to match the stresses. The data in that bound-
ary condition is exactly the discrepancy between the desired
stress �2 and the stress �p + 2�@u=@y along �s, weighted
by the factor �2. The equations for the controls (18)-(19)
are driven by the negative of the adjoint stress along �a,
the part of the boundary along which we apply the control,
weighted by the factor 1=�2.

4. NUMERICAL EXPERIMENTS

Here, the optimal control methodology developed in
Section 3 is applied to a boundary-layer 
ow having a sin-
gle instability wave that can be characterized by a discrete
frequency within the spectrum. We are not concerned with
the details of how disturbances are ingested into the bound-
ary layer; the underlying assumption here is that natural
transition involves some dominant disturbances that can be
characterized by waves, and in fact, in the present study,
by a single wave. As described and reviewed by Joslin et
al. (1994), these discrete small-amplitude instabilities can
be suppressed through wave cancellation (WC), or wave su-
perposition, using known exact information concerning the
wave. Hence, the optimal control is \known" and can be
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used to validate the present DNS/optimal control theory
approach in which the instability is to be suppressed with-
out any a priori knowledge of said instability.

The formidable coupled system (1)-(7) and (12)-(21) is
solved in an iterative manner. First, the simulation starts
with no control (g2 = 0) and the Navier-Stokes equations
are solved for the velocity (u; v) and pressure (p) �elds. The
adjoint equations are then solved for the co-state variables
(û; v̂) and p̂. Then, using these adjoint variables, the con-
trol g2 is then found by solving the sub-system (18)-(19).
The procedure is repeated until satisfactory convergence is
achieved.

The nonlinear, unsteady Navier-Stokes equations and
linear adjoint Navier-Stokes equations are solved by direct
numerical simulation (DNS) of disturbances that evolve spa-
tially within the boundary layer. The spatial DNS approach
(Joslin et al. 1993) involves spectral and high-order �nite-
di�erence methods and a three-stage Runge-Kutta method
for time advancement. Disturbances are forced into the
boundary layer by unsteady suction and blowing through a
slot in the wall upstream of the actuator.

4.1. Computational Parameters

For the computations, the grid has 401 streamwise and
41 wall-normal points. The free-stream boundary is located
75��o from the wall, and the streamwise length is 224��o
which is equal to approximately 8 Tollmien-Schlichting (TS)
wavelengths. The nondimensional frequency for the forced
disturbance is F = !=R � 106 = 86; the forcing amplitude
is vf = 0:1%. The Reynolds number based on the in
ow
displacement thickness (��o ) is R = 900. (The boundary seg-
ment along which disturbance forcing and control is e�ected
as well as where stress matching occurs are located within
the unstable region of the linear stability neutral curve.) A
time-step size corresponding to 320 steps per period Tp is
chosen for a three-stage Runge-Kutta method. Based on
the disturbance frequency, a characteristic period can be
de�ned as Tp = 2�=! = 81:1781; the resulting time-step
size is then �t = 0:2537.

To complete one period of the active-control simula-
tion process, 45 seconds on a Cray C-90 are required using
a single processor. Note, two periods of cost (Ta ! Tb
and Tb ! Ta) are required to complete one iteration of
the DNS/adjoint system. Although in general any time
interval may be speci�ed for Ta ! Tb, this study uses in-
teger increments of the period (Tp) for simplicity. Hence,
Ta ! Tb = 2Tp would cost 4Tp in computations, or roughly
3 min of C-90 time per iteration. Because only a single
small-amplitude wave (linear) is forced, the above grid is
more than adequate; however, a grid re�nement was per-
formed and produced results equivalent to the results re-
ported here.

For this study, the disturbance forcing slot �f , the con-

trol or actuator ori�ce �a, and the matching or sensor seg-
ment �s have equal length 4:48��o . The forcing is centered
downstream at 389:62��o (the Reynolds number based on the
displacement thickness at that location is R = 1018:99), the
actuator is centered at 403:62��o (R = 1037:13), and the sen-
sor is centered at 417:62��o (R = 1054:97). These separation
distances were arbitrarily chosen for this demonstration. In
practice, the control and matching segments should have a
minimal separation distance so that the pair can be pack-
aged as a single unit, or bundle, for distributed application
of many bundles.

4.2. Results

All simulations allow the 
ow �eld to develop for one
period; i.e., from t = 0 ! Ta = Tp, before control is
initiated. In the �rst series of simulations, the interval
during which control is applied is arbitrarily chosen to be
Ta ! Tb = 2Tp. Based on �2 = 1 and �2 = 10, the con-
vergence history for the wall-normal velocity (v) and the
actuator response g2 is shown in Fig. 1. The velocities are
obtained at a �xed distance from the wall corresponding to
1:18��o and are obtained at the �xed time Tb. Convergence
is obtained with 4 iterations. The results demonstrate that
a measure of wave cancellation can be obtained from the
DNS/control theory system. The wall-normal amplitude of
the modi�ed wave at R = 1092:5 is 40 percent of the uncon-
trolled wave; the control without optimizing the choice of
�2 and �2 has led to a 60 percent decrease in the amplitude
of the travelling wave. This results in a delay of transition
by-way-of a suppression of the instability evolution. The
converged results for this case are referred to as C1.

The e�ect of varying the window size (Ta; Tb) was ex-
amined by comparing the converged results (C1) which has
a window length (Ta = Tp ! Tb = 2Tp) with converged re-
sults (C2) for the extended window (Ta = Tp ! Tb = 3Tp).
The results are identical for the �rst two periods of time
and indicate that extending the amount of time for con-
trol serves to extend control only. This result also indicates
that one can solve for the optimal control over a given time
interval (Ta; Tb) by breaking up that interval and solving
for the optimal control over a series of smaller subintervals.
This approach could lead to substantial savings in CPU and
memory costs.

The instability wave resulting from wave cancellation
(WC) is shown with the control (C2) in Fig. 2. For the
present comparison, the amplitude of the actuation for
WC was adjusted until nearly exact wave cancellation was
achieved. Although the DNS/control theory did not achieve
the same level of energy removal, the similar e�ect of WC
was achieved without any a priori knowledge of the instabil-
ity. Also, note that g2 shows that the optimal state of the
control theory has nearly the exact phase characteristics as
WC and only lacks the necessary amplitude for additional
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wave cancellation. These encouraging results suggest that
by the appropriate selection of �2 and �2, the optimal con-
trol would be as e�ective for instability suppression as exact
wave cancellation.

Figure 1. Convergence of disturbance wall-normal velocity
and actuator response with downstream distance for control
(C1) in 
at-plate boundary-layer 
ow.

From the wave-cancellation study of Joslin et al.
(1994), the relationship between amplitude of the actua-
tor (va) and resulting instability showed a similar result
found in the channel 
ow wave-cancellation study of Birin-
gen (1984). Figure 3 shows this relationship. Beginning
with a small actuation amplitude, as the actuation level
is increased, the amount of wave cancellation (energy ex-
traction from the disturbance) increases. At some optimal
actuation, nearly exact wave cancellation is achieved for
the instability wave. As the actuation amplitude further
increases the resulting instability amplitude increases; this

was clearly explained in Joslin et al. (1994) to occur be-
cause in the wave superposition process, the actuator wave
becomes dominant over the forced wave. At this point, the
resulting instability undergoes a phase shift corresponding
to the phase of the wave generated by the actuator. The re-
lationship is encouraging for the DNS/optimal control the-
ory approach and suggests that a gradient descent type al-
gorithm might further enhance the wave suppression capa-
bility of the present approach. Namely, an approach for the
optimal selection of �2 and �2 might lead to a more useful
theoretical/computational tool for 
ow control. In prac-
tice, this optimal selection would be accomplished through
a feedback loop.

Figure 2. Disturbance wall-normal velocity and actuator
response with downstream distance for control (C2) and
wave cancellation (WC).
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Figure 3. Disturbance velocity resulting from variations in
actuator amplitude from simulations in Joslin et al. (1994).

To simply demonstrate this concept, Lagrange interpo-
lation (or perhaps extrapolation) is introduced for �2 based
on imposed value for �2:

�n+12 =
�n2 (�

�

2 � �n�12 ) � �n�12 (��2 � �n2 )

(�n2 � �n�12 )
; (22)

where ��2 are some desired values of the stress components
and �n2 are the stress components based on the choice �n2 .
Although ��2 may be equivalent to the target value �2 in
the functional (11), this may lead to signi�cant over/under
shoots during the iteration process. Instead, ��2 is the in-
cremental decrease, or target value, for interpolation to
more desirable and �2 values. To illustrate this process, the
�2 = 10 (C2) and �2 = 11 control results are obtained with
the iteration procedure. The measures of normal stress are
somewhat arbitrarily obtained at some time as measured by
the sensor or matching segment �s; the values of the normal
stress are given in the Table 1. These values are used for
a desired normal stress ��2 , which in this case is 65% of the
�2 = 11 results.

Table 1. Normal stress for two values of �2.

�2 normal stress
10 9:369� 10�6

11 8:814� 10�6

Using the results for �2 = 10 and �2 = 11 in (22)
yields the value �2 = 16:5 which is used in a simulation
to obtain a greater degree of instability suppression. The
WC results and the enhanced optimal control (C3) solution
are shown in Fig. 4. This interpolation approach indicates
that optimizing �2 has led to results comparable to WC.

For all practical purposes, the solutions obtained with the
present DNS/control theory methodology yield the desired

ow control features without prior knowledge of the forced
instability.

Figure 4. Disturbance wall-normal velocity and actuator
response with downstream distance for control (C3) and
wave cancellation (WC).

The adjoint system requires that the velocity �eld (u; v)
obtained from the Navier-Stokes equations be known for all
time. For the iteration sequence and a modestly course grid,
82 Mbytes of disk (or runtime) space are required to store
the velocities at all time steps and for all grid points for one
period. For Ta ! Tb = 3Tp, 246 Mbytes are necessary for
the computation. Clearly for three-dimensional problems
the control scheme becomes prohibitively expensive. There-
fore, a secondary goal of this study is to determine if this
limitation can be eliminated. Because the characteristics
of the actuator (g2) and resulting solutions are compara-
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ble to WC, some focus should be placed on eliminating this
large memory requirement. This limitation can easily be re-
moved if the 
ow-control problem involves small-amplitude
unsteadiness (or instabilities). The time-dependent coe�-
cients of the adjoint system reduce to the steady-state so-
lution and no addition memory is required over the Navier-
Stokes system in terms of coe�cients. This has been veri-
�ed by a comparison of a simulation with steady coe�cients
compared with the C2 control case (see Joslin et al., 1995).
Additionally, if the instabilities have small amplitudes, then
a linear Navier-Stokes solver can be used instead of the full
nonlinear solver, which was used in the present study. This
linear system would be very useful for the design of 
ow-
control systems. However, if the instabilities in the 
ow
have su�cient amplitude to interact nonlinearly, then some
measure of unsteady coe�cient behavier is likely required.
Depending on the amplitudes, the coe�cients saved at every
time-step may be replaced with storing coe�cients every 10
or more time-steps or with some statistical average of the

ow, thereby reducing the memory requirements by an or-
der of magnitude. This hypothesis will require validation in
a future study.

CONCLUSIONS

The coupled Navier-Stokes equations, adjoint Navier-
Stokes, and optimality condition equations were solved and
validated for the 
ow-control problem of instability wave
suppression in a 
at plate boundary-layer 
ow. By solving
the above system, optimal controls were determined that
met the objective of minimizing the perturbation normal
stress along a portion of the bounding wall. As a result,
the optimal control was found to be an e�ective means for
suppressing two-dimensional, unstable Tollmien-Schlichting
travelling waves. The results indicate that the DNS/control
theory solution is comparable to the wave-cancellation re-
sult but, unlike the latter, requires no a priori knowledge of
the instability characteristics.
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